Deterministic Compilation of Temporal Safety
Properties in Explicit State Model Checking

Kristin Y. Rozier and Moshe Y. Vardi

Rice University, Houston, Texas 7700%yr ozi er, vardi }@s.rice. edu

Abstract. The translation of temporal logic specifications constisuan essen-
tial step in model checking and a major influence on the effiyjeof formal
verification via model checking. We devise a new explicittstranslation of Lin-
ear Temporal Logic to automata for the class of LTL speciiices that describe
safety propertiesarguably the most used formal specifications in real-wsylst
tems. By exploiting the inherent determinism in safety fjgstions, we can
build deterministic Promelaever claims that accept only the bad prefixes of
the safety specification. In contrast to previous works, a@$ on compilation
to never claims rather than simply automata and measure Spin mddekng
time separately from compilation time and automata sizeeRtensive experi-
mental evaluation over a space of configurations demoestthat our new trans-
lation consistently results in better model-checking perfance, for a large array
of benchmarks, over the best current translation.

1 Introduction

In linear-time model checking, the negation of the tempspacification is translated
into a nondeterministic Buichi automaton, combined with siystem model, and then
checked for nonemptiness [33]. The model checker seardneddsso-shaped coun-
terexample tracén this combined model, a trace that starts at an initialeysstate
and reaches a cycle that contains an accepting state. Thieitestate translation of
Linear Temporal Logic (LTL) formulas to Blichi automata stitutes an essential step
in explicit-state linear-time model checking and has a majtuence on the efficiency
of model checking [10]. Consequently, this topic has resgtia significant level of at-
tention over the past two decades and there are many awatiadls; see [27] for an
extensive survey. Most of that research has focused on rizimigithe size of the gen-
erated automata. The rationale was that minimizing the aizbe automaton would
minimize the size of the space in the product of the systemeinaad the automaton
that the model checker must search. Yet this heuristic gmbrdvas no experimental
evidence that would demonstrate its efficacy [32]. In faug, éxtensive experimental
investigation reported on in [27], which focused satisfiability checkinga special

* This research was supported in part by NSF grants CNS 104886ZCF-1139011, by NSF
Expeditions in Computing project "EXCAPE: Expeditions inr@puter Augmented Program
Engineering”, by BSF grant 9800096, by a gift from Intel, dndthe Shared University Grid
at Rice funded by NSF under Grant EIA-0216467 and a partigtsftween Rice, Sun Mi-
crosystems, and Sigma Solutions, Inc.

case of model checking, shows little correlation betweeraaton size and model-
checking time. It is argued in [9] that larger automata masuhein less work for LTL
model checking. In this paper we revisit the translation BE lformulas to automata,
which we callLTL compilation specifically focusing on model-checking performance.

We concentrate on model checkisgfety propertieswhich assert “something bad
never happens” [1]. Safety properties are the most ofted fegenal properties in prac-
tice, capturing the desired behaviors of a wide variety af-world systems, such as of
fault tolerance [11] and hardware resets [7]. Safety prigpeican also describe most
intended properties of real-time systems, since respaamrgeasually required within
bounded intervals [15].

Intuitively, “something bad” only needs to happen once iroanputation for the
property to be violated. Thus, a violation of a safety prépean always be witnessed
by a finite prefix of a violating infinite trace. Rather than méathe system model for
a violating infinite trace, we can search the system modethisrbad prefix This in-
sight forms the basis for an alternative automata-theoagiproach for model checking
safety properties, proposed in [20]: construaleterministicautomaton for the lan-
guage of bad prefixes, take its product with the system mauohel, then search for
an accepting finite trace. A disadvantage of this approatiaiswhile the translation
from LTL to nondeterministic Buchi automata is, in the wotase exponential [34],
the translation from safety LTL formulas to deterministid¢@mata for bad prefixes is,
in the worst case, doubly exponential [20]. Perhaps beoafuses additional blow-up,
this approach, which we refer to dgterministic compilationhas yet to be seriously
explored.

There has been recent evidence that deterministic congpilamay be a viable
approach in spite of the possible additional exponentiavklip. Deterministic com-
pilation proved to be effective for SAT-based model chegkj@] and explicit-state
hybrid-systems analysis [26]. Determinizing finite autéaneepresenting safety for-
mulas has been correlated with smaller system model/autorpaoducts even without
minimizing the formula automaton [21]. Intuitively the phact—system model times
automaton—is simpler when the automaton is determinigi@mondeterminism in the
product stems solely from nondeterminism in the systeruitiaely, in the standard
approach the search algorithm has to find both a counterdeanage in the system
and an accepting run of the specification automaton. Thisreksearch is not needed
when the specification automaton is deterministic, as itehagique run on a given
input word. (It has been argued in [30], though without ewitks that “more determin-
istic” compilation may be an advantageous approach.) Regerk on deterministic
compilation in the context of run-time verification demaastd both that the doubly
exponential blow-up rarely appears in practice, and thatrdéisulting deterministic au-
tomata are often actualmallerthan their nondeterministic counterparts since we can
minimize deterministic automata efficiently [31, 11].

The main result of this paper is that deterministic complats indeed an effective
approach to explicit-state model checking of safety progerTo demonstrate this, we
build on the theoretical foundations developed in [4, 20.8fow how to use SPOT [6],
the best LTL-to-automaton translator (see [27]), BRACS Aut omat on [23], a tool for
determinizing and minimizing finite-word automata, in arttego from a nondetermin-

istic Buichi automatordy representing a safety propeiyto a deterministic automaton
49 that accepts the bad prefixesqnfThis construction uses the fact that determiniza-
tion of finite-word automata is much simpler than determatizn ofw-automata; while
nondeterministic finite automata can be determinized withrgple subset construction
[14], determinization of nondeterministic-automata requires a complex subset-tree-
based construction [28].

To use49 for model checking, we apply Spin, the canonical explitittes model
checker [12]. We introduce 26 novel encodings of LTL safetperties as deterministic
automata in the form of Promela (PROcess MEta LAnguagedr claims, describing
behaviors that shouldot occur in the system model. We implement these encodings as
an extension of the open-source CHIMP fof@1] that creates SystemC monitors for
LTL formulas; our extension, CHIMP-Spihgreates Spimever claims. Our system-
atic empirical investigation of the effectiveness of thastomata asever claims also
constitutes a novel contribution since earlier works f@zen translation to automata
without considering their encodings asver claims. We show over a large array of
benchmarks that our deterministic encodings for model kingcof safety properties
consistently result in significantly reduced model-chagkimes over the SPOT encod-
ing. We also demonstrate that the encoding used to reprdstarministic automata as
never claims has a significant impact on performance and we ideatfngle encoding
that dominates all other encodings.

A key point of our approach is that we concentrate on reduciadel-checking time
while typical experimental work in LTL model checking meessitotal time—compile
plus model-checking time, e.qg., [9]. Since in real-worlgkgations of model checking,
properties are written once and then checked against a otgasygstem design multiple
times, we find it worthwhile to reduce model-checking timereat the cost of increased
property-compilation time. This choice is particularlyrfieent for regression testing:
when the system is changed to fix a bug or add a new feature &dsssary to re-
check all properties checked earlier to ensure that previdiecks produce the same
results. To streamline regression testing future versafnSpin should not require a
recompilation ohever claims for each run of the model checker, even when they have
not changed. Such an adjustment would more accurately rafldbastrial applications
of model checking and, combined with our reduced model dnegdimes, reduce the
amortized cost of model checking.

The structure of the paper is as follows. We detail the themrgerlying our con-
struction of deterministic encodings of LTL safety spedeifions in Section 2 and de-
scribe our 26 novel constructions of Promekver claims in Section 3. We then de-
scribe our experimental methodology in Section 4, and mtesar experimental re-
sults, which demonstrate that we can consistently outparf®POT, the current best
LTL-compilation tool, in Section 5. We conclude with a dission in Section 6.

Lhttp://sourceforge. net/projects/chinp-ricel
2 Our tool extension will be posted online accompanying mation.

2 Theoretical Background

We interpret LTL formulas over infinite computations of thoerh 11: w — 2°°P, where
w is the set non-negative integers aPbp is a set of atomic propositions. We define
TL,i F ¢ (computationtat time instant € w satisfies LTL formulap) as follows [8]:

— miF pfor pe Propif pe ().

—TiEgAQgif TLi E gl andTti E go.

— i E-gif i ¥ Q.

- TikFXxgifmi+1Fg.

— TLiF g1UQg if 3] >, such thatt, j F g2 andvk,i <k < j, we haver, kF g;.
—TiE QR if Vj>i,if 1L j ¥ g, thendk, i <k < j, such thatt kE g;.

— T,i E Qgif 3] >1i, suchthatt j F g.

- miEOgif Vj>i,mjFo.

We takemodel$d) to be the set of computations that sati¢fgt time 0:{Tt: TLOF ¢ }.

In automata-theoretic model checking, we represent LTinfdas using Biichi au-
tomata. ANondeterministic Bchi Word AutomatofNBW) is a quintupleq = (Q,Z,d,
Q% F), whereQ is a finite set of stateg, is a finite alphabe®: Q x = — 2% is a tran-
sition function,Q® C Q is a set of initial states, arfdl C Q is a set of accepting states.
If d € d(q,0) then we say that we have a transition frgrto g’ labeled byo. A run of
a Biichi automatori over an infinite computation= 1, T, Th, ... € X iS a sequence
Jo, 01,0, - - . Of states such thaf € Qo, and(qi, T5,qi+1) € o forall i > 0. 4 acceptst
if the run overrtvisits states irF infinitely often. We denote the set of infinite words
accepted by by .%,(4). Computations are infinite words over the alphabet 2°"P,

Theorem 1. [34] Given an LTL formula, we can construct an NBWj = (Q, X, 8, do,
F) such thatQ| is in 2°(%)), 5 = 2P™P and Ly,(4y) is exactly models).

In the automata-theoretic approach to model checking 83theck that a model
M under verification satisfies an LTL formully, we translate-¢ into the automa-
ton 4.4 and composed-y with M, forming the automatorfly, -, which the model
checker checks for emptiness. If there is no accepting rumpt ¢ (i.e. the language
Z(Aw, -¢) = 0), we have proven thadl = ¢.

The automata-theoretic approach can be refined when deaiithgsafety proper-
ties A formula ¢ is a safety formula if its failure can always be witnessed Hinite
prefix [1]; that is, if Tt [~ ¢ then there there is a finite wokd € Z* such thatw- T}~ ¢
for every infinite computatiom e . Herew is called abad prefixfor ¢. The set of bad
prefixes for is pref(¢). Itis argued in [19] thapref(¢) is a regular language; conse-
guently, we can use automata on finite words for model checsérfiety properties.

A Nondeterministic Finite Word AutomatdNFW) is a quintupled = (Q,Z,d, Qo,
F), whereQ is a finite set of stateg; is a finite alphabe® : Q x = — 2% is a transition
function,Qp C Q is the set of initial states, arfel C Q is a set of accepting states. If
Qo is a singleton, and(q,a) contains at most one state for every stgt@nd lettera,
then we say thafl is aDeterministic Finite Word AutomatdidFW). A run of 4 over
a finite wordw € X* is accepting if it terminates in an accepting state.

Theorem 2. [19] Given a safety LTL formulé, we can constructa DF\Y = (Q,Z,9,
0o, F) such that Q| is in 22°* 5 = 2P1op, and.#(29) is exactly pre {¢).

Therefore, whenp is a safety property, we can opt to form an NFW or a DFW
corresponding te~¢ instead of an NBW, since we only need to construct an autamato
that accepts the set of finite prefixes that witness violatifid.

A concrete algorithm to construct automata for bad prefixas given in [4]. Given
a safety formulap, we first form the NBWA4,. Here we use SPOT [6] for this trans-
lation; we showed earlier that SPOT is the best LTL-to-awdttantranslator [27]. Let
empty4y) be the set of states ifly that cannot appear on an accepting run. SPOT can
compute this set of states and remove them frggnWe now turn this NBW into an

NFW ﬂdﬁ by re-labeling all remaining states to be accepting. We nawehthe NFW

leqf defined by the quintuple?’,2,&,qoNQ,FNQ’), whereQ = Q—empty4,) and
o' is restricted taY x . Note that this approach is not sound for liveness formulas.

Theorem 3. [4] JZIJ: rejects precisely pre(f).

To model check a safety formula, we need an automaton thaeptsyre f(¢) [31].
If we apply the subset constructionﬂi we obtain a DFV\M&?, where all nonempty sets

of states ofﬂlé are accepting states, that rejepte f(¢). Its complemenﬂ%, where
only the empty set of states is accepting, accepes(9).

3 Never Claim Generation

A never claim is a Promela code sequence that defines a system betratishould
never happen. Since we usever claims to specify properties that shouldverhap-
pen, that is, bad properties we wish to assert the systemmbésive, we createever
claim corresponding to the negation of the property we wishdld. In other words,
when we create aever claim that accepts exactly’ (—¢) we are stating that it would
be a correctness violation of the system if there exists aguion sequence in which
= holds. For the system to be considered corrgetiust always hold.

To generate a Promelever claim for LTL formulad, Spin translates:¢ into the
NBW 44 = (Q,%,d,00,F), enumerates and creates label for the stat€y iabelso
with 'init’ to designate the state in which threver claim starts, labels accepting states
with "accept,’ and implemen@& by a nondeterministic choice: for each state, nondeter-
ministically choose from among enabled transitions givendet of propositions true in
the current state. Currently, all LTL-to-Promela transtatfollow this high-level con-
struction. (They vary widely in the details of the formatioing_4 as described in [27].)

In this paper, we construct Promelaver claims corresponding to the DF\Mg
for bad prefixes of safety formulas. We now describe severathalternatives for con-
structingnever claims for safety properties.

To prove that a system modél satisfies the LTL property = (CJgood), we create
anever claim that accepts the negation of this property. Spin catihidoautomatically
using the commanslpin -f "![] good’ . Intuitively, thenever claim generated by

the formula would restrict system behavior to those statesra((!good) holds. If any
such execution of the system is found, Spin reports a vamrati
In addition to the infinite-behavimever claims produced by Spin, SPOT, and other

tools, never claims can be also be used to specify finite automata; thanclistn is
implicit in the structure of the claim rather than expligittated. A finite behavior
is matched if the claim can reach its closing curly brace &/eikecuting in lockstep
with the system model [13]. Spin automatically checks fas tigpe ofnever claim
termination. Anever claim corresponding to the NFW that accepig f(¢) simply
needs to reach its closing curly brace, for example, whenfahmula is Cgood if
lgoodis ever true, thus accepting the finite prefix indicating tmaectness violation
of the system. Note that we check the finite-beharéwer claim using different Spin
commands than the infinite-behavior version, where thetime-flag- a explicitly tells
Spin to check for acceptance cycles. Specifically, we checktite acceptance using

the following commands:
cat Mdel >"pan_in

cat finite_never_claim>> pan_in

spin -a pan_in

gcc -w -0 pan -D _POSI X_SOURCE - DMEM.I M=1550 - DSAFETY - DXUSAFE - DNOFAI R
-DNXT pan.c

.Ipan -v -X -nml0000 -wl9 -A-E -cl

3.1 Determinization and Minimization

As in [31], there are two approaches to constructing the Dﬂ:ﬁNFirst, we can explic-

itly determinize the NFV\MqI using an NFW-to-DFW translatoBRl CS Aut omat on[23]),
which we refer to as thdet construction. Second, we can constructeaer claim
directly from leqf essentially performing the subset construction on-theFbr con-
sistancy with previous work [31], we refer to this as tiemdet construction, because
determinism is delayed. The advantage of pre-compilateiardhinization is the abil-
ity to minimizeﬂg before constructing theever claim; we useBRI CS Aut omat on

to produce a minimal equivalent DFW. We refer to this asrthe construction. The
additional steps of determinization and minimization m@aguir a nontrivial computa-
tional cost during the construction of thever claim. The trade-off between property-
compilation time and model checking time is a key issue ig flaper.

To useBRI CS Aut onmat on, we have to find a way to represent the alphabet of the
automata [31]. SPOT labels transitions with Boolean foasuver the seProp of
atomic propositions, whilBRI CS Aut omat on represents the alphabet of the automaton
as Unicode characters. Therefore, we adapt the technidy&4]ofor describing the
alphabet in terms of 16-bit integers. We have two alphabgtesentations: OBDD-
based and assignment-based.

We can represent Boolean formulas usihglered Binary Decision Diagrams (OB-
DDs) [3]. We implement this approach as follows. First, we obtaferences to all
Boolean formulas that appear as transition labels in thenaaton using SPOT&pot : :

t gba_reachabl e_i terat or _breadt h_first::process_link() function. Second, we
assign a unique integer label to the OBDD representatioacii 8oolean formula (up
to 291 in the worst case) using SPOBpgot : : t gba_succ_i terator: : current _cond

i tion() function. The formulas labeling automaton transitionsicaw be replaced by
the corresponding integers.

Alternatively, we can represent Boolean formulas in teritheir satisfying truth
assignmentsBy selecting an order foProp= {ps,...,pn}, We can represent an as-
signment as an-bit vectora= [a3,ay, . .., an]. Every such bit vector corresponds to an
integerl (a) in the domain{0,...,2"—1}; 1(a) = a1 2" 1 +a;2" 24 ... +a,2°. We can
use this domain as a new alphabet, replacing a transiticaidelby a Boolean formula
o by several transitions labeled by the integers correspanii truth assignments sat-
isfying a. Once we have usé&Rl CS Aut omat on to form a DFW, we convert transition
labels back to a Boolean formula that we use to construct Plamaver claims.

The assignment-based approach sometimes creates a largpemnaf transitions.
For example, the Boolean formuleue corresponds to2assignments. We introduce
an edge-abbreviationechnique to merge separate transitions. When we haveatever
transitions with the same source and destination states;ameremove these tran-
sitions and replace them by a single transition labeled leydisjunction of the la-
bels of the removed transitions. For each such disjuncti@utilize SPOT’s built-in
formul a_t o_bdd() function to create a BDD representing the disjunction, aottia
simplified formula from the BDD via the reverbdd_t o_f or mul a() function, and then
label the associated transition by this new formula. A eglaiptimization is to replace
all el se branches in the Promelaever claims by explicit Boolean formulas corre-
sponding to the negation of the conjunction of the labeldlaffahe other transitions
(reduced using SPOT’s built-in BDD functions). This enahle to eliminate redundant
trap states and redugever claim code size.

3.2 Never claim encodings

Inspired by the work in [31], we introduce 26 ways of encodimmgomata for safety
properties as Promefever claims. We form these encodings by combining oeirer
claim adaptations of the constructions for transition ctien (f r ont vsback), deter-
minism @det vsnondet), state minimizationr§ n vsnoni n), and alphabet representa-
tion (bdd vsabr) from [31] with the options to encodever claim states either using
Promela state labels or integer state numbsrat(e vsnunber), to employ either finite

or infinite acceptance conditionki(vsi nf), and to reduce the size of the generated
never claim via edge abbreviation and trap-state eliminatiea).(We illustrate our
encodings in Appendix A for benchmark safety formula 4 froablg 3.

Nondeterministic encodings We introduce 12 novel Promela encodings that perform
determinization on-the-fly. Inondet never claims we maintain an array used to de-
scribes sets of states ﬂﬁ An array that corresponds to an empty set indicatesmﬁat
got stuck, which means that we have discovered a violatiojn 8/e can encode the
transition relations either in fr ont fashion, where for any stagwe enumerate the
outgoing transitions frona, or in aback fashion, where for any statpwe enumerates
the incoming transitions that lead o

Thef ront _nondet encoding uses drf statement to check each outgoing transition
from each possible current state and marks all possiblesiatés in theiext _state
array. If there is no possible next state, the automatos.fadmever claims with finite
acceptance conditions, this is accomplished by breakimg thedo loop and coming

to the end} of the claim. Theéback _nondet encoding works similarly, but the branching
is over incoming transitions rather than over outgoing ¢raons. See Listing 1.4 and
and 1.5 for examples.

Deterministic encodings In contrast tonondet encodings, where we determinize on
the fly, indet encodings we already have the statesﬁ@fand we can encode them

directly. We introduce 14 novel deterministic Promela afings that presume® has
been minimized and determinized using assignment-basextiary. We use two ways
to encode the states. First, we can encode states by usimgRreariable, whose value,
a (humber), refers to the current states. Second, we can use Spimdasia state-label
format coupled witlyot o statements to transition between states. We illustratie efac
these two state representations in turn.

Theback_det encoding uses state numbers. Tieer claim first calculates the
syst emst at e_i ndex, the integer corresponding to the current valuation of treteIn
variables. Like itshack_nondet counterpart, it transitions by checking for an enabled
incoming transition from the current state. Thent _det _swi t ch_nunber _f i n encod-
ing uses a series of statements, the closest Promela construction to a Gslikech
statement, to check for enabled outgoing transitions froendurrent state. See List-
ing 1.6, Listings 1.7, and 1.8 for examples.

Alternatively, we can encode tleever claim without using any state numbers, by
taking advantage of Promela’s constructs for represemtirigmata states. THieont _
det _switch_stat e_i nf encoding transitions to program labels corresponding ¢o th
names of the states lﬁg. The initial state is labeledi‘hit” and appears first, the
accepting state is labeledccept ,” and all other states are assigned unique names. See
Listings 1.9 and 1.9 for examples.

State Alphabet Automaton Never Claim State
Minimization| Representation] Acceptance Encoding Representation
no front _nondet
BDDs

back_nondet
front _nondet

number
finite back_nondet
assignments back_det
yes front det _menory_tabl e
infinite
. state
front_det_switch
assignments number
with
e_dge back_det number
abbreviation

Table 1. The configuration space for generatimgyer claims. Each row in the table represents
an encoding configuration. Componenets of the winning engoate bolded.

Look-Up Tables The above encodings represent automaton transition hmetas
i f statements. Alternatively, we can declare a state lookabjetin memory storing

the next state as a function of the current state andsyiséemst at e_i ndex. This
forms very compaatever claims and the next state can be found in one operation. The
front _det _menory_t abl e encoding declares the table directly as a one-dimensional,
row-major array. See Listing 1.11 for an example.

Configuration space The different options allow 26 possible combinations fonge
atingnever claims, summarized in Table 1.

4 Experimental Method

Platform We ran all tests on the Shared University Grid at Rice (SUG@R)Intel
Xeon compute clustérSUG@R is comprised of 134 SunFire x4150 nodes, each with
two quad-core Intel Xeon processors running at 2.83GHz &@&Blof RAM per pro-
cessor. The OS is Red Hat Enterprise 5 Linux, 2.6.18 kerrethEest was run with
exclusive access to one node. Times were measured usingitkéilie command.

4.1 Model-Scaling Benchmarks

We chose a set of 14 typical safety formulas, taken from edlditerature, listed in
Table 3. We model checked them against scaled linearlydiréversal Models (UM)
from [27]. (See also Appendix B.) By scaling up the size ofsth&Ms to dwarf the
sizes of the safety formulas, we create difficult model-&iregbenchmarks.

0{O-bad “Something bad never happens.”

1|0(request— X grant) “Every request is immediately fol-
lowed by a grant”

2|0(=(pAQ)) Mutual Exclusion: p and g can
never happen at the same time.”

3|0(p— (XXX0q)) “Always, p implies q will happen 3
time steps from now.”

A\ X((pAQ)RY) “Conditionr must stay on until but-
tonsp andqg are pressed at the same
time.”

541X (0(p)) slightly modified intentionally safe
formula from [19]

6*|X(O(qVvXOp) AO(rvXO-p)) slightly modified accidentally safe
formula from [19]

7 X([O(qv oOp) AQ(r v OO-p)] vOqv Or) slightly modified pathologically
safeformula from [19]

8|0(p— (QAXgA X XQ)) safety specification from [31]
9| ((((POR(=p1))R(—p2))R(—p3))R(—p4))R(~p5)) Sieve of Erathostenes [13, 21]

10 (O((pOA—pl) — (O=pl1V (-plU(plOA—-pl))))) G.L. Peterson’s algorithm for mu-
tual exclusion algorithm [25, 22, 13,

T T 24,21]

\ttp://rcsg.rice. edu/ sugar/

11/(O(=p0 — ((=plUp0) vO-pl))) CORBA General Inter-Orb Protocol
[17,21]

-p0 A =pl)))) A (O(p2 — GNU i-protocol, also called iprot [5,

A(O-p2V (~p2Upl))) 24,21]

-p0 A =pl)))) A (O(p2 — Sliding Window protocol [16, 21]

A (O-p2v (-p2Upl)))

O(=p2 — (=p0A—pl1)))
13((0(p1 — O(-p1 —
O(=p2 — (=p0A—pl1)))

NS e N

Table 3.Industrial safety formulas used in model-scaling benchar

For each of the formulas in Table 3, we model checked agaisstias of linearly-sized UMs,
described in [27], starting with the 10-variable UM and stglup the number of variables in
the model, thereby exponentially increasing its stateespa used two configurations of UMs;
starred formulas are checked against UMs that set all Vasabtrue first; see Appendix B.

4.2 Formula-Scaling Benchmarks

For our formula-scaling benchmarks, we model checked earchula against a universal model
with 30 variables and 1,073,741,824 states. We employedypes of formula-scaling bench-
marks: random and syntactically safe random. We scaledafabhk formulas until model check-
ing became unachievable within machine bounds of timepattsout.

We generated two sets each of 580ength safety specifications oveatomic propositions,
for min {5,10,15,20,25} andnin {2..6} (25,000 random formulas in these two benchmark sets,
combined). The probability of each temporal operator ®as0.5. For the first set, we generated
syntactic safety formulas, allowing negation only dirg&téfore atomic propositions and limiting
the temporal operators {X, G, R}. For the second set, we generated each specification rapdoml
over the full syntax of LTL. We then checked if the generatpdc#fication represented a safety
property using the SPOT commahtll 2t gba - O, adding the specification to our test set if so
and rejecting it if not.

Test MethodWe encoded every benchmark LTL formula as a set of Promelar claims
using SPOT and our novel encodings. We experimented witackcfR1] encodings; that tool
produced too many bugs to be included. However, it is redderta assume that the results would
not be comparable to our best encoding since the algorithpieimented by scheck constructs a
nondeterministic finite automaton from the restricted atesof the formula that accepts precisely
the informative prefixes of the formula and then determisiias a last step without employing
optimizations that we found particularly influential, sugs minimization or edge abbreviation.
Eachnever claim, was model checked by Sgin.

We measured model checking time separately from the timmesaf@ous compilation stages.
This is important for two reasons. It is relevant for regresstesting and system debugging
applications where the system is repeatedly changed butlobdcked against the same specifi-
cations. It is also essential for demonstrating our claiat theterministic encoding of LTL safety
formulas can reduce model checking time; it is clear that reenat, for example, encoding LTL
formulas in a manner that compiles more quickly but requihessame or more time to model
check than the equivalent SPOT-encoding.

Figure 1 depicts the Spin model checking process. Unlikeipus works, which report only
the total time required for analysis via Spin, we measuretithe required for compilation of

4 We also investigated using the SPOT back-end; SPOT is unaldealyze Promelaever
claims at the time of this writing.

10

-f

l
—~0—Q—0
~O7.

Promela
Ay

never claim

Y

—> Promela — C C — binary Model EMPTY?
Apiy Check
M

Fig. 1. System Diagram illustrating the Spin model checking prec&ge present an improved
encoding for the LTL formula-f to the Promelaever claimA_¢.

LTL-to-never claim (by either SPOT or CHIMP-Spinhever claim-to-C (via thespi n com-
mand), and C-to-binary (vigcc) separately. In the following plots, we refer to the sum afdh
three times asompile timeand separate this sum from fromodel checking timeor the time
required to run th@an executable produced by Spin. Because we ran SPOT as a stepdret
ation of each of our new encodings, the specification automggneration times incurred by our
algorithm will always be greater than running SPOT aloneis(important to note that our au-
tomaton generation times are consistently dwarfed by tihesponding model checking times.)
To streamline regression testing, we argue that futureisessof Spin should not require us to
recompilenever claims for each run of the model checker, even when they havehanged.
Such an adjustment would more accurately reflect industgplications of model checking and,
combined with our reduced model checking times, reducentrtized cost of model checking.

5 Experimental Results

Our experiments demonstrate that the new Promeler claims we have introduced signifi-
cantly improve the translation of LTL safety formulas intepécit automata, as measured by
model checking time. We found that one of our encodings isgbdibestf ront _det _swi tch
_mi n_abr _ea_st at e_fi n. Using this encoding, we can consistently improve on theeholdeck-
ing time required for SPOT encodings. We recommend usind pont _det _swi t ch_mi n_abr
_ea_state_fin encoding for safety formulas and the standard SPOT encddingon-safety
formulas. (Recall that SPOT can test for safety formulas.)

We found certain encoding aspects to be always better. Tipsexplain why théront
_det _swi t ch_mi n_abr _ea_st at e_f i n encoding is always the fastest: it is the encoding that com-
bines all of the fastestever claim components. We found the following trends to hold: de-
terministic (let) never claims are faster than determinized-on-the-flgn(det) never claims;
finite acceptancd (n) is faster than infinite acceptanden{); state labelsgt at €) are faster than
state numbersn(inber); minimized automatan{ n) are faster than nonfmi n); edge abbrevia-
tion (ea) always equates to better performance. Note that detestiiréncoding det) enables
faster features such as state minimization and edge abbimviand that, all other encoding as-
pects being equal, there seems to be a positive correlagiovelen the code size of a giveever
claim and the required model checking time, explaining ffieiency of this encoding. Also note
that the {ront _det _swi t ch) encoding enables the faster state labels representatiah).

11

5.1 Model-Scaling Experimental Results

iprot Formula sliding_window Formula
40000 P miimi SPOT i 40000 P imiim: SPOT 1
[ffONL_det_switch_min_abr_ea_state_fin [== front_det_switch_min_abr_ea_state_fin i
[Deterministic Encodings. H F Deterministic Encodings H
35000 |- i 35000 [i
T i ! e i !
@ o i Q o i
£ 30000 - H £ 30000 |- H
® r ! o r !
£ F i £ F !
'c 25000 | i ‘= 25000 |- I
o F H o r i
= i B4 !
3 i 3 5]
© 20000 ! @ 20000 N
F ! % [!
2 15000] 2. o0k H
£ 15000 i £ 15000 F i
S E S o i
Q (o) F s
< = - 4
S 10000 S 10000 [i
o r o r ;
° - o F K
s} L 5 F &
£ 5000 £ 5000 o~
o ‘_\\" 4
r o r e
0 I S PN PR RO o o a :
25 26 27 28 29 30 31 32 33 34 35 36 37 25 26 27 28 29 30 31 32 33 34 35 36 37
number of propositions in the UM number of propositions in the UM

(a) Benchmarks for the iprot specification (fdx} Benchmarks for the sliding window specifi-
mula 12). cation (formula 13).

Fig. 2. Model scaling benchmarks, showing the model-checking ditveesed on the number of
propositions in the UM.

Figure 2 demonstrates empirically that our deterministitoenata require less time to model
check than SPOT's nondeterministic automata. For somehineaidks, we found that all of our
encodings, whether they determiniz@8 up front or on the fly, required less model checking time
than the equivalent nondeterministic SP@Ver claims® For example, for the iprot and sliding
window benchmarks, pictured in Figures 2(a) and 2(b), athofnew encodings performed better
than SPOT, though odir ont _det _swi t ch_mi n_abr _ea_st at e_fi n encoding was best. In these
figures, the SPOT encoding is shown in red, our best encodisgawn in purple, and our 25
other encodings are shown in magenta. Note also that thetsed#@monstrate the orthogonality
of automata size and model-checking time: all of our enaggliepresent the same automaton so
the differences in model-checking times in these graphs statirely from the type of encoding
and not the number of states in the automaton. Determiréstiodings can result in significant
improvements in model checking performance by reducinig taltthe internal nested depth-first
search algorithm in the model checker; see Appendix A.1.

Figure 3 shows a speedup of a factor of two when using our bd#i@-Spin encoding to
model check our 14-formula workload against a 34-variabl. Since we terminated the plot
when the first benchmark formula exceeded machine bounidspltit does not show instances
where our encoding was able to scale to larger model cheddénghmarks than the equivalent
SPOT encoding. For example, Figure 2 demonstrates thatmmadéng was more scalable than
SPOT's when model checking formulas 12 and 13.

Out of all of our benchmarks, the formula 4 benchmark dispthyhe smallest difference
between our encoding and SPOT. For the 36-variable univeredel, the SPOThever claim
took 4606.94 seconds, or roughly 77 minutes whereasever claim took 4281.22 seconds,
or roughly 71 minutes Still, oufrr ont _det _swi t ch_mi n_abr _ea_st at e_f i n encoding encoding
enabled Spin to scale to model check a 40-variable modelesisemodel checking the SPOT
never claim timed out at 39 variables.

5 Note that not all SPOTever claims are nondeterministic; for other benchmarks SPOT pro
duced deterministioever claims.

12

Model-Scaling Benchmark Workload
250000 -
S :_ - SPOT I
7] B front_det_switch_min_abr_ea_state_fin i
£200000 ;
[} 3 !
£ - i
s ’ i
K] i i
5150000 [~ [
5] o 1
) 3
) |
(0] L
jo] -
c
2100000 [~
[S] -
]
2 |
Q L
g L
S 50000 [~
e L
= |
5 L
2] | .

ol I e il IR TN SRR |

24 26 28 30 32 34

number of propositions in the UM

Fig. 3. Sums of the model-checking times for all model-scaling bemark instances, based on
the number of propositions in the UM.

Since we call SPOT as a step in our encoding, our automatcgraggon times must always
be higher than SPOT but compile times were consistently féaldoy model checking times. Our
total compile times were comparable to SPOT for our modalisg benchmarks. For the set of
14 safety formulas in our workload, when model-checkingragjea 34-variable UM as shown in
Figure 3, the sum of our compile times was 6.01 seconds (thakb down into a sum of LTL-to-
never claim times of 1.74 seconds, a sum of Promela-to-C times@d Seconds, and a sum of
C-to-binary times of 4.22 seconds), while the sum of our nhotiecking times was 122662.78
seconds. For SPOT encodings, the sum of compile times w&sséconds (including a sum of
LTL-to-never claim times of 0.14 seconds, a sum of Promela-to-C times@§ Seconds, and
a sum of C-to-binary times of 4.33 seconds) with a sum of matietking times of 225132.7
seconds. Note that the untixme command is not accurate to hundredths of a second so there is
a potential for some error contributions in these sums.

5.2 Formula-Scaling Experimental Results

Figures 4(a) and 4(b) show the sums of the model checkingstsheandomly-generated safety
formulas: completely randomly generated in Figure 4(a) symtactically safe in Figure 4(b).
Model checking times summed over all non-trivial randomgngrated formulas for our best
encoding were significantly lower than for SPOT encodings.

Since we call SPOT as a step in our encoding, our automatceraggon times were always
higher than SPOT but were consistently dwarfed by modelldhgdimes. This trend holds for
syntactically safe random formulas as well. See Figure 5.2.

BRI CS Aut omat on experienced some errors when encoding some randomly deddia-
mulas. These were rare enough as to not significantly impactiming results, i.e. for the set
of 500 5-variable, 15-length random formulas in Figure 48R CS Aut omat on experienced

13

5 Variable Random Formulas 6 Variable Syntactically Safe Random Formulas

E o —cec SPOT 200000

- S
front_det_switch_min_abr_ea_state_fin s 190000 SPOT . " i
- = - - == - - 180000 front_det_switch_min_abr_ea_state_fin 7

e 170000 7
e & 160000 F
v @ 150000 F
7 ~ 140000 v
130000 7
120000 | a
110000 R
100000
90000
80000 -
70000
60000 -
50000 -
40000 -
30000 F
e 20000 F -
10000 [
P

[T R S RIS S 05

10 15
20 Formula length

\
Sum model-checking time (st

L
20

10 15
Formula length

(a) Sum of model-checking times for 5 variafil Sum of model-checking times for 6 variable
random formula benchmark. syntactically safe benchmark.

Fig. 4. Graphs of sums of model-checking times for both categoriear@mlomly-generated for-
mulas, showing that our model checking times were congigtiwer than SPOT.

nine errors. We summed data only for formulas where both #@BSand CHIMP-Spin model
checking runs completed without an error or timeout.

The difference in model checking time is not directly caated with other statistics we mea-
sured, such as the length of counterexamples returned fiouta violations. Across all of the
randomly-generated formulas, we found that the numberatéstand the lengths of counterex-
amples associated with ofiront _det _swi t ch_mi n_abr _ea_st ate_fi n never claims and with
SPOT’s were usually very close, within a few states of eatterotin general, the number of
transitions had a higher variance between these two engsidimthe median cases, we ended up
with less than or equal to the number of transitions in theévedgent SPOThever claim.

6 Discussion

In this paper we brought attention to the benefit of deterstimcompilation for safety LTL prop-
erties. We defined novel encodings of safety LTL propertege&terministimever claims and
showed that one encoding consistently leads to faster rubabelking times than the state-of-
the-art SPOT encoding or any of our other new encodings.€fbey, we recommend a multiple-
pronged property-compilation approach to the Spin modetkér: use SPOT for the compilation
of non-safety properties and use deterministic compifaticth our newf r ont _det _swi t ch_mi n
_abr _ea_st ate_fin encoding for safety properties. This approackitensibledifferent encod-
ings ofnever claims may be appropriate for different types of LTL formajlaee [29].

Determinizingnever claims for safety properties up front, rather than on-tlyedeems to
have a major effect on model-checking performance. Whiteeeimethod of determinizing yields
better performance due to the simpler structure of the prostearch space, determinizing up front
enables the use of other optimizations that improve perdoice: state labels (rather than num-
bers), state minimization, edge abbreviation. There is alsonsistent time savings associated
with model checking using finite acceptance conditions.

In general, deterministic compilation is more time consugrihan nondeterministic compi-
lation due to the need to determinize and minimize, thoughdberhead is dwarfed by the im-

14

5 Variable Random Formulas 6 Variable Syntactically Safe Random Formulas

2]
o
-3
S

—mimem SPOT f-mmm SPOT
front_det_switch_min_abr_ea_state_fin 55 F- front_det_switch_min_abr_ea_state_fin

))
o S
T
I
S o
T

N
S
T
W
S &
T

.
5
T
\
N
o
G2 RARRA AR

=
o

T

N

S)

Sum compilation time (sec)
A
Sum compilation time (sec)
&
T

o

T
=

o o
T

L I I I 1 I I I I 1 I I I I 1 - I I I 1 I I I I 1 I I I I 1
° 0 10 15 20
Formula length

10 15
Formula length

(a) Sum of compilation times for 5 variable rgip} Sum of compilation times for 6 variable syn-
dom formula benchmark. tactically safe benchmark.

Fig. 5. Sums of compilation times for both categories of randondnerated formulas, showing

that compilation times were dwarfed by model checking tinNeste that the unixi re command

is not accurate to hundredths of a second; the times presbate may contain substantial error
contributions. These graphs simply show that the sum of dertimes over all formulas in a test

set was always under a minute, for both SPOT and the best CHEpi? encoding.

provements in model-checking time. Still, our experimewvealed th&RlI CS Aut omat on tool to
be a slow link in our tool chain; improving this link is a subjdor future research. In particular,
we plan to investigate replacirgRl CS Aut onmat on via integrating related functions distributed
with SPOT. Also, for this paper we implemented our encodiagia extension of the CHIMP
tool. However, in the future we would like to implement ousbencoding more efficiently rather
than relying on a modification of a tool created for a différparpose.

Finally, Kupferman and Lampert [18] developed an altexgatipproach to model checking
of safety properties, which involves the construction obadeterministic finite-word automaton
for bad prefixes. That approach may vyield longer countergiasn but it does not involve the
theoretical additional exponential blow-up that is inveavin the approached pursued here. A
comparison with that approach is another subject for futesearch.

References

1. B. Alpern and F.B. Schneider. Recognizing safety anchégs. Dist.Comp, 2:117-126,
1987.

2. R. Armoni, S. Egorov, R. Fraer, D. Korchemny, and M. Y. Vaklficient LTL compilation
for SAT-based model checking. IECAD, pages 877-884. IEEE, 2005.

3. R.E. Bryant. Symbolic Boolean manipulation with Ordeiidary-Decision Diagrams.
ACM Computing Survey24(3):293-318, 1992,

4. M. d’Amorim and G. Rosu. Efficient monitoring of-languages. I'CAV, pages 364—-378,
2005.

5. Y. Dong, X. Du, G. J. Holzmann, and S. A. Smolka. Fightingliock in the GNU i-protocol:
a case study in explicit-state model checki&d.TT 4(4):505-528, 2003.

6. A. Duret-Lutz and Denis Poitrenaud. SPOT: An extensib&eleh checking library using
transition-based generalized Biichi automataMiRSCOT Spages 76—83. IEEE, 2004.

15

10.

11.

12.
13.

14.

15.

16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.

28.
29.

30.

31.

32.

33.

34.

C. Eisner, D. Fisman, J. Havlicek, Y. Lustig, A. Mclsaatd ®. Van Campenhout. Reason-
ing with temporal logic on truncated paths. @AV, pages 27-39, 2003.

. E.A. Emerson. Temporal and modal logic. Handbook of Theoretical Computer Science

volume B, chapter 16, pages 997-1072. Elsevier, MIT Pr&g1).1

. J. Geldenhuys and H. Hansen. Larger automata and lessfevdrKL model checking. In

SPIN volume 3925 of NCS pages 53-70. Springer, 2006.

R. Gerth, D. Peled, M.Y. Vardi, and P. Wolper. Simple be-fly automatic verification of
Linear Temporal Logic. IlPSTV pages 3—18. Chapman & Hall, 1995.

K. Havelund and G. Rosu. Synthesizing monitors for ggbedperties. INTACAS pages
342-356. Springer, 2002.

G.J. Holzmann. The model checker SpEEE TSE 23(5):279-295, May 1997.

G.J. HolzmannThe SPIN Model Checker: Primer and Reference Man@dtison-Wesley,
2003.

J.E. Hopcroft and J.D. Ullmarintroduction to Automata Theory, Languages, and Compu-
tation. Addison-Wesley, 1979.

L. Jategaonkar Jagadeesan, C. Puchol, and J. E. VonuBkthaSafety property verification
of ESTEREL programs and applications to telecommunicat&oftware. InNCAV, volume
939 of LNCS pages 127-140. Springer, 1996.

R. Kaivola. Using compositional preorders in the vedificn of sliding window protocol. In
CAV, volume 1254 of.NCS pages 48-59. Springer, 1997.

M. Kamel and S. Leue. Validation of a remote object intieceand object migration in
CORBA GIOP using Promela/Spin. BPIN 1998.

O. Kupferman and R. Lampert. On the construction of finteraata for safety properties.
In ATVA pages 110-124, 2006.

O. Kupferman and M.Y. Vardi. Model checking of safetygedies.FMSD, 19(3):291-314,
Nov 2001.

O. Kupferman and M.Y. Vardi. Weak alternating automaéaret that weak ACM TOCL,
2(2):408-429, Jul 2001.

T. Latvala. Efficient model checking of safety propestin SPIN pages 74—-88, 2003.

N. A. Lynch. Distributed Algorithms Morgan Kaufmann Publishers Inc., 1996.

A. Mgller. dk.brics.automaton. http://www.brics.diefomaton/, 2004.

R. Pelanek. BEEM: benchmarks for explicit model chezkim SPIN pages 263—267, 2007.
G. L. Peterson. Myths about the mutual exclusion problerh Process. Lett.12(3):115—
116, 1981.

E. Plaku, L. E. Kavraki, and M. Y. Vardi. Falsification of L safety properties in hybrid
systems. IMACAS pages 368-382. Springer, 2009.

K.Y. Rozier and M.Y. Vardi. LTL satisfiability checkingnternational Journal on Software
Tools for Technology Transfer (STTTR(2):123 — 137, March 2010.

S. Safra. On the complexity afautomata. IFFOCS pages 319-327, 1988.

K. Schneider. Improving automata generation for liteanporal logic by considering the
automaton hierarchy. IbPAR pages 39-54, London, UK, 2001. Springer-Verlag.

R. Sebastiani and S. Tonetta. “more deterministic” ssdller” Buchi automata for efficient
LTL model checking. ICTHARME volume 2860 o NCS pages 126-140. Springer, 2003.
D. Tabakov, K. Y. Rozier, and M. Y. Vardi. Optimized temglomonitors for SystemC.
Formal Methods in System Desigrage online, 2012.

M. Y. Vardi. From monadic logic to PSL. IRillars of Comp. Scj.volume 4800 oLLNCS
pages 656—-681. Springer, 2008.

M.Y. Vardi and P. Wolper. An automata-theoretic apphoizautomatic program verifica-
tion. InProc. 1st Symp. on Logic in Comp. Sgiages 332—-344, Cambridge, Jun 1986.
M.Y. Vardi and P. Wolper. Reasoning about infinite coragions. Information and Compu-
tation, 115(1):1-37, Nov 1994.

16

©oO~NOO D~ WNEPE

GO WNPE

Appendix A: Promela Code Examples

We show examples of our new Promela encodings of automatabel

Al Examples of the Winning Encoding:
front_det_sw tchm n.aabr_eastatefin

The encodings without edge abbreviation have as many*asr@nsitions per state, sometimes
fewer if multiple valuations ok lead to automaton acceptance. We can improve model-chgeckin
performance ofiever claims fordet encodings utilizing state labels by abbreviating the trans
tions. For finitenever claims, our edge abbreviation algorithm can take advartétiee Promela
semantics property that transitioning to a terminal ertatesand failing to find such a transi-
tion are equivalent. This enables us to further reduce tlie cize for finite-acceptancever
claims by employing trap state elimination as we are abhtig the edges. Theever claim

for our winning encodingf, r ont _det _swi t ch_ni n_abr _ea_st at e_fi n, corresponding to bench-
mark formula 4 appears in Listing 1.1.

[+«LTL formula: (!(X ((p0 & pl) R p2)))=*/

never {
init_S2:
atomc {
if
:: (1) -> goto SO;
fi;
}
SO:
atomc {
if
(!p2) -> goto done;
(('p0 && p2) || (!'pl && p2)) -> goto SO;
fi;
}
done: /=xsignal property violation by |anding herex/
ski p;
}

Listing 1.1. lllustrating thef ront _det _swi t ch_mi n_abr _ea_stat e_fin never claim
encoding of the benchmark formula 4

Deterministic encodings can result in significant improeens in model checking perfor-
mance by reducing calls to the internal nested depth-fiestthealgorithm in the model checker.
Take for example the following variant of benchmark form@ldJ(qVv XOp) AC(r v XO-p).
The SPOT encoding for the correspondimgyer claim appears in Listing 1.2. As we increase
the size of the universal model, the time required to modekklthisnever claim increases
exponentially.

never { // F((!pl & XFI'p0) | (!p2 & XFpO0))
TO init:
if
S

I'(p2)) -> goto accept_S2
((1))

-> goto TO_S3

17

A WNE

o ('(pl)) -> goto accept_S4
fi;

accept _S2:
if
:7 ((p0)) -> goto accept_al
:1 (!(p0)) -> goto TO_S6
fi;
TO_S3
if
© ('(p2)) -> goto accept_S2
((1)) -> goto TO_S3
:: (!'(pl)) -> goto accept_S4
fi;
accept _S4:
if
:: (!(p0)) -> goto accept_al
:: ((p0)) -> goto TO_S7
fi;
TO_S6
if
:: ((p0)) -> goto accept_al
2o (!(p0)) -> goto TO_S6
fi;
TO_S7:
if
:: ('(p0)) -> goto accept_al
:1 ((p0)) -> goto TO_S7
fi;
accept _al |
skip

}

Listing 1.2. lllustrating the SPOTever claim for the originalaccidentally safdor-
mula from [19], which we modified to form our benchmark forrmél.

However, if we encode this samever claim deterministically, the time required to model
check thisnever claim remains near zero as we increase the size of the ualversdel. For
comparison, théront _det _swi t ch_mi n_abr _ea_st at e_f i n encoding of the same formula from
Listing 1.2 appears in Listing 1.3. Examine the initial stani t _S1, in Listing 1.3. In this case,
Spin initially explores the valuation where the variabjs pl, andp2 are false, in which case
this never claim transitions directly taone, causing Spin to skip the NDFS in the emptiness
check. Itis the NDFS that causes the SR@Ver claim to require exponentially increasing time
to model check: note that the initial state in Listing 1.2 hasequivalent deterministic path to
termination.

[LTL formula: (P([1(p1 | (X [] pO)) & [1(p2 | (X ([] ! p0)))))
never {
init_S1:
atomc {
if
(p2 & !'pl) -> goto S2;

18

7 o (pl && p2) -> goto init_S1;
8 o (pl && !'p2) -> goto SO;
9 .. else -> goto done;

10 fi;

11 }

12 SO:

13 atomc {

14 if

15 o (pl && 'p0) -> goto SO;
16 .. else -> goto done;

17 fi;

18 }

19 Ss2:

20 atomc {

21 if

22 0 (p0 && p2) -> goto S2;
23 .. else -> goto done;

24 fi;

25 }

26 done: // signal property violation by |anding here
27 ski p;

28 }

Listing 1.3. lllustrating thef ront _det _swi t ch_m n_abr _ea_st at e_fi n never claim
for the originalaccidentally safdormula from [19], which we modified to form our
benchmark formula 6.

A.2 Examples of Nondeterministic Encodings

1 /+LTL formula: (! (X ((p0 & pl) R p2)))*/

2 int i =0;

3 bool not_stuck = fal se;

4

5 /+Declare state arrays; they are automatically initialized to O/
6 bool current_state [3];

7 bool next_state [3];

8 never {

9 /*This next |ine happens in time -1; one step before the first
10 step of the system nodel */

11 next _state[2] = 1; /*initialize current to the initial statex/
12

13 do

14 oo atom cf

15 /*First, swap of current_state and next_statex/

16 i = 0;

17 do

18 (i <3) ->

19 current_state[i] = next_state[i];

20 i ++;

19

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

co (i >= 3) -> break;
od;

/*reset next_statex/
i = 0;
do
(i <3) ->
next _state[i] = 0;
i ++;
iro (i >= 3) -> break;
od;
/*Second, fill in next_state array*/
if
current _state[2] ->
if
(1)
-> next _state[l] = 1;
el se -> skip;
fi;
.. else -> skip;
fi;
if
;. current_state[0] ->
if
(1)
-> next _state[0] = 1;
el se -> skip;
fi;
;. else -> skip;
fi;
if
;. o current_state[1l] ->
if
(p0 && pl && p2)
-> next _state[0] = 1;
el se -> skip;
fi;
if
((p2 && !'p0) || (p2 && !pl)
-> next_state[1l] = 1,
el se -> skip;
fi;
;. else -> skip;
fi;
/*Third, check if we're stuck*/
i = 0;
not _stuck = fal se;
do
(i <3 ->
not _stuck = not_stuck || next_state[i];
i ++;

20

71
72
73
74
75
76
7
78
79

O©oOoO~NOO D WNPE

31
32
33
34
35
36
37

co (i >= 3) -> break;
od;
if
(! not_stuck) -> break;
el se -> skip;
fi;
}
od;
}

Listing 1.4. lllustrating thef r ont _nondet _nom n_bdd_nunber _f i n never claim en-
coding of formula 4. Note this encoding utilizes finite aceee.

[+ LTL formula: (!(X ((p0 & pl) R p2)))=*/
int i =0;

/«Decl are state arrays
They are automatically initialized to 0/
bool current_state [3];
bool next_state [3];
never {

SO_init: /xinitialize current herex/
atom c {
current_state[0] = 1;
next _state[0] =
next _state[l] =

0;
(current_state[2] && (p0 && pl && p2)) ||
(current_state[1l] && (1));
next _state[2] = (current_state[0] && (1)) ||
(current_state[2] && ((p2&& p0)||(p2&&! pl)));

/= if any next state is enabled, |oop */

/* Note that this if-statenent will choose nondetermnisticaly
fromanong the true guards, but that’s OK since nultiple
guards go to the sanme placex/

i f
©: next_state[0] -> goto Si;

next state[l] -> goto SI;

next state[2] -> goto SI;
:: else -> goto accept_all;
fi;

Sl: /+loop here forever if property hol ds*/

atom c {
[*update: current_state = next_statex/
i =0
do
(i <3 ->
current _state[i] = next_state[i];

21

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

O©oOoO~NOO D WNPE

i +4+;

co (i >= 3) -> break;
od;

next _state[0]
next _state[1]

0;

(current_state[2] &
(current_state[l] &
(current_state[0] &
(current_state[2] &

& (&& pl && p2)) ||

)
)
2

0

p0
(1)
next _state[2] & (1)
& ((p
[+ if any next state is enabled, |oop */
i f
:. next_state[0] -> goto Si;
next state[l] -> goto Si;
next _state[2] -> goto Si;
.. else -> goto accept_all;
fi;

&&! p0) || (p2&&! pl)));

accept_all: /=xsignal property violation by omega-|ooping herex/

ski p;
}

Listing 1.5. lllustrating theback _nondet _m n_bdd_number _i nf encoding of formula

4. Note this encoding utilizes infinite acceptance.

A.3 Examples of Deterministic Encodings

[+ LTL formula: (!(X ((p0 & pl) R p2)))=*/
int current_state = 2;

int next_state = 2;

int systemstate_index = 0;

never {

next _state = 2; /*initialize current to the initial state
do

atomc {

current _state = next_state; /*update statex/

next _state = -1; /*reset=/

/*Cal cul ate the system state index*/

system state_index = 0; /*reset=/

system state_index=system state_index+ ((p0) -> (1 <<
system state_index=system state_index+ ((pl) -> (1 <<
system state_index=system state_index+ ((p2) -> (1 <<
if

(&

((current_state == 2) && (system state_index ==
((current_state == 2) && (system state_index ==
((current_state == 0) && (systemstate_index ==
(() &&

current _state == (system state_index ==

her ex/

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
4
42
43
44
45

©Coo~NOUhWNE

NNNNNRERRRRRRRRE
EWONRPOOONOUDAWNERO

(

fi;.
}
od;
}

(current _state
(current _state
(current_state
(current _state
(current _state
(current_state
(current _state

next _state
(current _state
current_state
current_state
current_state
current_state
current_state
current_state
current_state
((current _state
> next_state

(
(
(
(
(
(
(
>
(
(
(
(
(
(
(
(

—~ o~~~ o~ —~ — —

el se break

1

1
NN O NN DNDDN
—— — — — — —

1

11
PRPRPRPRPPPRPO
ANPNPINPINS SIS N

&&
&&
&&
&&
&&
&&
&&

&&
&&
&&
&&
&&
&&
&&
&&
&&

(system state_i
(system state_i
(system state_
(system state_i
(system state_i
(system state_
(system state_i

(system state_
(system state_i
(system state_i
(system state_
(system state_i
(system state_i
(system state_
(system state_i
(system state_i

ndex
ndex
ndex
ndex
ndex
ndex
ndex

NP, Wbk owoo
—_—— — — — — —
—_——

ndex
ndex
ndex
ndex
ndex
ndex
ndex
ndex
ndex

~No ok wNDEFE O
— — — — — ~— ~— — —
—

Listing 1.6. lllustrating theback _det _mi n_abr _nunber _f i n encoding of formula 4.

| *
i nt
i nt

never {
next _state

do
c atom

current_state =
next _

LTL fornul a:
current _
next _state

int systemstate_index =

state

2;

2;

0;

2;

¢ {

state -1 /*r

next _state;

eset */

(M(X ((pO & pl) R p2)))=/

/*initialize current to the initia

/*updat e statex/

/*Cal cul ate the system state index*/
system state_i ndex =

if

(current _state
i f

0;

== 2)

-> next_state =
(system state_index
-> next_state =

23

->

(system state_index

0;

0;

[xreset*/

system state_index=system state_index +(
system state_index=system state_index +(
system state_index=system state_index +(

(p0)
(pl)
(p2)
==)
==)

state herex/

-> (1 << 2):0);
-> (1 << 1):0);
-> (1 << 0):0);

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

od;

fi;

(system state_index

-> next_state

0;

(system state_index

-> next_state

0;

(system state_index

-> next_state

0;

(system state_index

-> next_state

0;

(system state_index

-> next_state

0;

(system state_index

-> next_state
el se break;

(current_state ==

if

fi;

) ->

0;

(system state_index

-> next_state

L

(system state_index

-> next_state

0;

(system state_index

-> next_state

0;

(system state_index

-> next_state
el se break;

(current_state ==

if

fi;

) ->

0;

(system state_index

-> next_state

L

(system state_index

-> next_state

L

(system state_index

-> next_state

1

(system state_index

-> next_state

L

(system state_index

-> next_state

L

(system state_index

-> next_state

1

(system state_index

-> next_state

L

(system state_index

-> next_state
el se break;

24

L

74}
Listing 1.7. lllustrating thef r ont _det _swi t ch_nunber _f i n never claim encoding of

formula 4.
1 /= LTL formula: ('(X ((p0 & pl) R p2)))=*/
2 int current_state = 2;
3 int next_state = 2;
4 int systemstate_index = 0;
5 never {
6
7 SO_init:/*initialize current herex/
8 atomc {
9 current_state = 2;
10
11 /+Cal cul ate the system state index*/
12 system state_index = 0; /*reset*/
13 system state_index = system state_index + ((p0) -> (1 << 2):0);
14 system state_index = systemstate_index + ((pl) -> (1 << 1):0);
15 system state_index = systemstate_index + ((p2) -> (1 << 0):0);
16 i f
17 (system state_index ==)
18 -> next_state = 0; goto SI1;
19 (system state_index ==)
20 -> next_state = 0; goto SI1;
21 (system state_index ==)
22 -> next_state = 0; goto Si;
23 (system state_index ==)
24 -> next_state = 0; goto SI1;
25 (system state_index ==)
26 -> next_state = 0; goto SI1;
27 (system state_index ==)
28 -> next_state = 0; goto Si;
29 (system state_index ==)
30 -> next_state = 0; goto Si;
31 (system state_index ==)
32 -> next_state = 0; goto SI1;
33 el se
34 -> goto accept_stuck;
35 fi;
36
37
38 S1: /xloop here forever if property hol dsx/
39 atomc {
40 current _state = next_state; /*update statex/
41
42 /*Cal cul ate the system state index*/
43 system state_index = 0; /*resetx*/
44 system state_index = systemstate_index + ((p0) -> (1 << 2):0);
45 system state_index = system state_index + ((pl) -> (1 << 1):0);

25

46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

system state_index = system state_index + ((p2)

if

(current_state == 2) ->

if
(system state_index ==)
-> next_state = 0; goto S1;
(system state_index ==)
-> next_state = 0; goto Si;
(system state_index ==)
-> next_state = 0; goto Si;
(system state_index ==)
-> next_state = 0; goto S1;
(system state_index ==)
-> next_state = 0; goto Si;
(system state_index ==)
-> next_state = 0; goto Si;
(system state_index ==)
-> next_state = 0; goto S1;
(system state_index ==)
-> next_state = 0; goto S1;
el se
-> goto accept_stuck;

fi;

(current_state == 0) ->

if
(system state_index ==)
-> next_state = 1; goto Si;
(system state_index ==)
-> next_state = 0; goto S1;
(system state_index ==)
-> next_state = 0; goto Si;
(system state_index ==)
-> next_state = 0; goto S1;
el se
-> goto accept_stuck;

fi;

(current_state == 1) ->

if
(system state_index ==)
-> next_state = 1, goto Si;
(system state_index ==)
-> next_state = 1; goto Si;
(system state_index ==)
-> next_state = 1; goto Si;
(system state_index ==)
-> next_state = 1, goto Si;
(system state_index ==)
-> next_state = 1; goto Si;
(system state_index ==)
-> next_state = 1; goto Si;

26

-> (1 << 0):

0);

96
97
98
99
100
101
102
103
104
105
106
107

O©oOoO~NOO D WNPE

33

(system state_index ==)

-> next_state = 1, goto Si;
(system state_index ==)
-> next_state = 1, goto Si;
el se
-> goto accept_stuck;
fi;
fi;
}
accept _stuck: /xsignal property violation by onega-|oopi ng herex/
ski p;

}

Listing 1.8. lllustrating thef r ont _det _swi t ch_nunber _i nf never claim encoding of
formula 4. It employs the Promela acceptance-cycle aconepteondition.

[+ LTL formula: (!(X ((p0 & pl) R p2)))=*/
int systemstate_index = 0;
never {

init_S2:
atomc {
system state_index = 0; /*resetx*/
system state_index= system state_index + ((p0) -> (1 << 2):0);
system state_index= system state_index + ((pl) -> (1 << 1):0);
system state_index= system state_index + ((p2) -> (1 << 0):0);

if
(system state_index == 5)
-> goto SO;
(system state_index == 7)
-> goto SO;
(system state_index == 6)
-> goto SO;
(system state_index == 0)
-> goto SO;
(system state_index == 3)
-> goto SO;
(system state_index == 4)
-> goto SO;
(system state_index == 1)
-> goto SO;
(system state_index == 2)
-> goto SO;
el se
-> goto accept_stuck;
fi;
}
SO:
atomc {

system state_index = 0; /*reset=/

27

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

system state_index=
system state_index=
system state_index=

system state_index + (
system state_index + (
system state_index + (

if
(system state_index ==)
-> goto S1;
(system state_index ==)
-> goto SO;
(system state_index ==)
-> goto SO;
(system state_index ==)
-> goto SO;
el se
-> goto accept_stuck;
fi;
}
Sl:
atomc {

system state_index = 0; /*reset=/

system state_index= system state_index
system state_index= system state_index
system state_index= system state_index
if
(system state_index == 0)
-> goto S1;
(system state_index == 1)
-> goto S1;
(system state_index == 2)
-> goto S1;
(system state_index == 3)
-> goto S1;
(system state_index == 4)
-> goto Si;
(system state_index == 5)
-> goto Si;
(system state_index == 6)
-> goto S1;
(system state_index == 7)
-> goto Si;
el se
-> goto accept_stuck;
fi;
}
accept _stuck: /=*signal property
ski p;

}

vi ol ati on by onega-| oopi ng herex/

Listing 1.9. lllustrating thef ront _det _swi t ch_m n_abr _st at e_i nf never claim en-
coding of formula 4. This version employs the Promela notibstates and the Promela

acceptance-cycle acceptance condition.

28

1 /= LTL formula: ('(X ((p0 & pl) R p2)))=*/
2 int systemstate_index = O;

3 never {

4

5 init_S2:

6 atomc {

7 system state_index = 0; /*reset=/

8 system state_index= system state_index + ((p0) -> (1 << 2):0);
9 system state_index= systemstate_index + ((pl) -> (1 << 1):0);
10 system state_index= system state_index + ((p2) -> (1 << 0):0);
11 if

12 i1 (system.state_index == 5)

13 -> goto SO;

14 i. (system state_ index == 7))

15 -> goto SO;

16 :. (system state_index == 6)

17 -> goto SO;

18 ©: (system.state_index == 0)

19 -> goto SO;

20 ©: (system.state_index == 3)

21 -> goto SO;

22 :. (system state_index == 4)

23 -> goto SO;

24 ©: (system.state_index == 2)

25 -> goto SO;

26 i1 (system.state_index == 1)

27 -> goto SO;

28 .. else -> goto done;

29 fi;

30 }

31 SO:

32 atomc {

33 system state_index = 0; /*resetx*/

34 system state_index= system state_index + ((p0) -> (1 << 2):0);
35 system state_index= systemstate_index + ((pl) -> (1 << 1):0);
36 system state_index= system state_index + ((p2) -> (1 << 0):0);
37 if

38 :: (system state_index ==)

39 -> goto S1;

40 i (system state_index ==)

41 -> goto SO;

42 ©: (system.state_index ==)

43 -> goto SO;

44 ©: (system.state_index ==)

45 -> goto SO;

46 .. else -> goto done;

47 fi;

48 }

49 S1:

50 atomc {

29

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

system state_index = 0; /*reset=/

system state_index= system state_index + ((p0)
system state_index= system state_index + ((pl)
system state_index= system state_index + ((p2)

if
(system state_index == 0)
-> goto S1;
(system state_index == 1)
-> goto S1;
(system state_index == 2)
-> goto S1;
(system state_index == 3)
-> goto S1;
(system state_index == 4)
-> goto S1;
(system state_index == 5)
-> goto S1;
(system state_index == 6)
-> goto S1;
(system state_index == 7)
-> goto S1;
el se -> goto done;

fi;

}

-> (1 << 2
-> (1 << 1
-> (1 << 0

done: /=xsignal property violation by |anding herex/

ski p;
}

):0);
):0);
):0);

Listing 1.10. Illlustrating thef r ont _det _swi t ch_mi n_abr _st at e_f i n never claim en-

coding of formula 4.

[+ LTL formula: (!(X ((p0 & pl) R p2)))=*/
int current_state = 0;

int next_state = 0;

int systemstate_index = 0;

int table[24];

never {

SO _init:/*initialize current herex/

atomc {

table[0] = 2; table[l] = 2; table[2] = 2;
table[4] = 2; table[5] = 2; table[6] = 2;
table[8] = 1; table[9] = 1, table[10] = 1;
table[12] = 1, table[13] = 1; table[14] = 1,
table[16] = -1; table[1l7] = 2; table[18] = -1;
table[20] = -1; table[21] = 2; table[22] = -1,

/*Cal cul ate the system state index*/
system state_index = 0; /*resetx/
system state_index = system state_index + ((pO0)

30

table[3] =
table[7] =
tabl e[11]
tabl e[15]
tabl e[19]
tabl e[23]

-> (1 << 2):

20 system state_index = system state_index + ((pl) -> (1 << 1):0);

21 system state_index = system state_index + ((p2) -> (1 << 0):0);
22

23 /*Lookup the next state in the tablex/

24 next _state = table[current_state * 8 + system state_index];

25 if

26 .o (next_state == -1) -> goto accept_stuck;

27 .. else -> goto S1;

28 fi;

29

30

31 S1: /xloop here forever if property hol dsx/
32 atomc {

33 current _state = next_state; /*update statex/

34 next _state = -1; /[*reset*/

35

36 /*Cal cul ate the system state index*/

37 system state_index = 0; /*reset*/

38 system state_index = system state_index + ((p0) -> (1 << 2):0);
39 system state_index = systemstate_index + ((pl) -> (1 << 1):0);
40 system state_index = systemstate_index + ((p2) -> (1 << 0):0);
41

42 / xLookup the next state in the tablex/

43 next _state = table[current_state * 8 + system state_index];

44 if

45 :: (next_state == -1) -> goto accept_stuck;

46 ;. else -> goto Si;

47 fi;

48 }

49

50 accept_stuck: /=*signal property violation by onega-I| ooping herex/
51 ski p;

52 }

Listing 1.11. lllustrating thef r ont _det _menor y_t abl e_ni n_abr _i nf encoding of for-
mula 4.

31

Appendix B: Universal Model from [27]

For each of the formulas in our benchmark sets we model chgalnst univeral models that
are linearly-sized in the number of atomic propositionsdescribed in [27]. For formula-scaling
benchmarks we use a universal model with 30 variables anchéotel-scaling benchmarks we
use a series of universal models starting with the 10-vhriatodel and scaling up the number of
variables in the model, thereby exponentially increasiagtate space.

For all benchmarks, our universal system model is a Pronegram that explicitly enu-
merates all possible evaluations oW p and employs nondeterministic choice to pick a new
valuation at each time step. For example, wReap= {p,q}, the Promela model is:

bool p,q;
active proctype generateVal ues()
{
do
at om ¢{
i f
i true ->p =0;
vootrue ->p =1,
fi;
if
v true ->q = 0;
©rotrue ->q = 1,
fi;
}
od
}

Starred formulas are checked against universal models¢hall variables torue
first like this:

bool p,q;
active proctype generateVal ues()
{ do
o atom cf
i f
i true ->p = 1,
iootrue ->p =0
fi;
i f
tootrue ->q = 1,
i true ->q = 0;
fi; }
od }

32

